
2025 - 2026 (30)


2025 (30)
[133] Lewis Acid Adsorption Promotes CO2 Enrichment for Efficient Formic Acid Electrosynthesis on Reconstructed Bi2O2CO3 in Acidic Media. Angew. Chem. Int. Ed. 2025, accepted.
[132] Guo, Z.; Li, F.; Xiao, Y. C.; Hung, S.-F.; Lu, Y.-R.; Foroozan, A.; Liu, J.; Sun, S. S.; Liu, S.; Che, Y.; Wang, Q.; Liu, M.; Wang, C.; Li, Y.; Peng, K.-S.; Liu, Y.-C.; Fan, M.; Dijvejin, Z. A.; Papangelakis, P.; Wang, Y.; Zeraati, A. S.; Han, K.; Corbett, P.; Higgins, D.; Miao, R. K.*, Sinton, D.* Efficient amino-acid-based reactive capture of CO2 via nickel molecular catalyst. Nature Commun. 2025, accepted.
[131] Yang, Q.; Wang, X.; Yang, Y.; Mi, Z.; Shen, Y.-J.; Peng, K.-S.; Zhang, M.; Ghosh, T.; Yang, R.; Hang, L.; Aabdin, Z.; Leow, W. R.; Hung, S.-F.;* Wang, Z.;* Lum, Y.* Electrochemical Assembly of a Defective Cu Catalyst for High Current CO2 Electrolysis to Methane in a Zero-Gap Electrolyzer. Angew. Chem. Int. Ed. 2025, e202515396.
[130] Li, S.; Deng, L.;* Hung, S.-F.; Zhao, S.; Wang, L.; Hao, Y.; Long, Y.; Li, B.; Hsu, Y.-H.; Chen, Y.-Y.; Zhang, Y.; Chen, T.-Y.; Hu, F.; Li, L.; Hu, Y.;* Wu, Y.; Peng, S.* Embedded Ir-Ru Single-Atom Alloy with Self-Limiting Motifs for Sustainable Proton Exchange Membrane Water Electrolysis. Adv. Mater. 2025, e07340.
[129] Shilpa, S.; Yuan, F.; Li, Z.; Dahiya, P.; Mata, A. C.; Yadav, R. M.; Gao, G.; Hung, S.-F.; Khan, S. A.; Wu, J.; Rahman, M. M.; Roy, S.* Polymer Derived and Ni-Single Atom Doped Carbon Nanofibers for CO2 Capture and Electroreduction to CO. ChemSusChem 2025, e202500602.
[128] Kuan, C.-H.; Jiang, X.; Zhou, Q.; Wen, X.; Hung, S.-F.; Chen, H.-L.; Shih, Y.-S.; Narra, S.; Chiou, J.-W.; Lin, J.-M.; Hou, Y.;* E. W.-G. Diau* Overcoming the Stability Issue for Hydrophobic Hole Transporting Layers Utilized in Tin-Lead Perovskite and Tandem Solar Cells. Adv. Func. Mater. 2025, e22134.
[127] Li, S.; Zhao, S.; Hung, S.-F.; Deng, L.; Wang, L.; Shi, F.; Dong, A.; Zhang, Y.; Chen, T.-Y.; Hu, F.; Li, L.; Ramakrishna, S.; Wu, Y.; Peng, S.* Oxophilic Sites Mediated Dynamic Oxygen Replenishment to Stabilize Lattice Oxygen Catalysis in Acidic Water Oxidation. J. Am. Chem. Soc. 2025, 147, 33770-33779.
[126] Lu, Y.-H.;† Shen, Y.-J.;† Tsai, H.-J.; Lee, Y.-H.; Huang, Y.-Y.; Lin, Z.-Y.; Huang, W.-Y.; Lee, T.-J.; Chen G.-L.; Hiraoka, N.; Ishii, H.; Liu, H.-J.; Hsu, S.-H.; Chang, C.-C.; Xu, A.;* Hung, S.-F.* Model Thiophene-Decorated Nickel Porphyrins for Tandem CO2 Reduction. Nature Synth. 2025, accepted.
[125] Wu, Q.; Ji, S.; Chen, J.; Tan, X.-Q.; Ong, W.-J.; Du, R.; Wang, P.; Wang, H.; Qiu, Y. Q.; Yan, K. Y.; Zhao, Y. Z.; Zhao, W-W.; Peng, K.-S.; Chen, Y.-Y.; Hung, S.-F.;* Zhou, L.; Wang, X.; Qiu, G.;* Chen, G.* Realizing the practical application of CO2 electroreduction for urban wastewater denitrification. Nature Water 2025, accepted.
[124] Xu, T.; Shi, J.; Peng, K.-S.; Hsu, Y.-H.; Liu, Y.-C.; Wang, S.; Zhang, H.; Wang, Y.; Zhang, G.; Hung, S.-F.; Liu, K.;* Wang, X. Organic Surface Passivation on Rh@CeO2 Cocatalysts for Photocatalytic Overall Water Splitting. Angew. Chem. Int. Ed. 2025, 64, e202513029.
[123] Peng, K.-S.; Shen, Y.-J.; Chang, Y.-C.; Liu, Y.-C.; Chou, C.-H.; Chang, Y.-C.; Li, M.-H.; Lu, Y.-R.; Hsu, S.-H.; Hung, S.-F.* Effect of Electrolyte Cations on the Selectivity of Electrochemical CO₂ Reduction in a Flow Cell System. J. Chin. Chem. Soc. 2025, accepted.
[122] Xu, X.; Su, B.; Wang, S.; Xing, W.; Hung, S.-F.; Pan, Z.; Fang, Y.; Zhang, G.; Zhang, H.; Wang, X. CO2 Photoreduction by H2O: Cooperative Catalysis of Palladium Species on Poly(triazine imide) Crystals. Angew. Chem. Int. Ed. 2025, 64, e202512386.
[121] Wei, F.; Zhao, J.; Liu, Y.-C.; Hsu, Y.-H.; Hung, S.-F.; Fu, J.; Liu, K.; Lin, W.; Yum, Z.; Tan, L.; Lu, X. F.; Feng, C.; Zhang, H.;*Wang, S.* Photocatalytic ethylene production over defective NiO through lattice oxygen participation. Nature Commun. 2025, 16, 6586.
[120] Zhao, T.; Cai, G.; Zhai, X.; Wang, S.; Yang, X.; Peng, K.-S.; Chen, M.-C.; Hung, S.-F.; Kong, X.; Li, M.; Tang, W.; Zhou, L.;* Hua, W.* Impact of Surface Li-containing Rock-salt Phase on Electrochemical Performance of Li- and Mn-rich Cathodes. J. Power Sources 2025, 649, 237445.
[119] Yang, Q.; Wang, X.; Zhang, J.; Mao, Y.; Xi, S.; Liu, Y.-C.; Hsu, Y.-H.; Zhang, L.; Dolmanan, S. B.; Wang, M.; Wang, B.; Zang, Y.; Zhang, M.; Leow, W. R.; Hung, S.-F.; Wang, Z.;* Lum, Y.* Dopant-induced switch in rate-determining step enables high current ethylene electrosynthesis at <2 V full-cell voltage. Nature Synth. 2025, accepted.
[118] Wang, M.; Luo, C.; Mi, Z.; Chang, Y.-C.; Chueh, Y.-T.; Luo, P.; Zhang, M.; Zhang, J.; Yang, R.; Yang, Q.; Wang, S.; Chen, S.; Jia, J.; Leow, W. R.; Aabdin, Z.; Hung, S.-F.; Lum, Y.* Triple-Phase Boundaries Enable Selective Urea Production from Simulated Flue Gas in a Zero-Gap Electrolyzer. Angew. Chem. Int. Ed. 2025, 64, e202505987.
[117] Su, B.; Wang, S.; Xing, W.; Liu, K.; Hung, S.-F.; Chen, X.; Fang, Y.; Zhang, G.; Zhang, H.; Wang, X.* Synergistic Ru Species on Poly(heptazine imide) Enabling Efficient Photocatalytic CO2 reduction with H2O Beyond 800 nm. Angew. Chem. Int. Ed. 2025, 64, e202505453.
[116] Li, J.; Zhao, J.; Wang, S.;* Peng, K.-S.; Su, B.; Liu, K.; Hung, S.-F.; Huang, M.; Zhang, G.; Zhang, H.; Wang, X.* Activating Lattice Oxygen in Perovskite Ferrite for Efficient and Stable Photothermal Dry Reforming of Methane. J. Am. Chem. Soc. 2025, 147, 14705-14714.
[115] Wang, L, Hung, S.-F.; Zhao, S.; Wang, Y.; Bi, S.; Li, S.; Ma, J.-J.; Zhang, C.; Zhang, Y.; Li, L.; Chen, T.-Y.; Chen, H.-Y.; Wu, Y.; Peng, S. Modulating the covalency of Ru-O bonds by dynamic reconstruction for efficient acidic oxygen evolution. Nature Commun. 2025, 16, 3502.
[114] Kibria, Md G.; Kumar, P.; Zhang, H.; Yohannes, A.; Wang, J.; Zeraati, A. S.; Roy, S.; Wang, X.; Kannimuthu, K.; Askar, A.; Miller, K. A.; Ling, K.; Adnan, M.; Hung, S.-F.; Ma, J.-J.; Huang, W.-H.; Trivedi, D.; Molina, M.; Zhao, H.; Martí, A.; Leontowich, A.; Shimizu, G.; Sinton, D.; Adachi, M.; Wu, Y.; Ajayan, P.; Siahrostami, S.; Hu, J. Isolated iridium oxide sites on modified carbon nitride for photoreforming of plastic derivatives. Nature Commun. 2025, 16, 2862.
[113] Wang, Q.;† Hung, S.-F.;† Huang, X.; Tao, H. B.;* Yang, H. B.; Zhang, L.; Zhang, J.; Liu, Y.; Chen, J.; Xu, Y.; Su, C.;* Chen, J. G.;* Liu, B.* Breaking the Linear-scaling Limit in Multi-electron-transfer Catalysis through Intermediate Spillover. Nature Catal. 2025, 8, 378-388.
[112] Zhao, S.; Hung, S.-F.; Wang, Y.; Li, S.; Yang, J.; Zeng, W.-J.; Zhang, Y.; Chang, H.-H.; Chen, H.-Y.; Hu, F.; Li, L.; Peng, S.* Dynamic Deprotonation Enhancement Triggered by Accelerated Electrochemical Delithiation Reconstruction during Acidic Water Oxidation. J. Am. Chem. Soc. 2025, 147, 7993-8003.
[111] Chen, M.; Tan, S. X.; Cheng, S.; Chen, Y.-Y.; Hsu, Y.-H.; Hung, S.-F.; Zhang, L.; Gao, J. Revisiting the Ruthenium Oxide-based Water Oxidation Catalysts in Acidic Media: from Amorphous to Crystalline. Nano Energy 2025, 137, 110800.
[110] Shen, Y.-J.; Hsu, Y.-H.; Chang, Y.-C.; Ma, J.-J.; Peng, K.-S.; Lu, Y.-R.; Hsu, S.-H.; Hung, S.-F.* Microenvironment Matters: Copper-Carbon Composites Enable Highly Efficient Carbon Dioxide Reduction Reaction to C2 Products. ACS Appl. Mater. Interface 2025, 17, 9378-9390.
[109] Zhao, T.; Zhang, J.; Wang, K.; Xiao, Y.; Wang, Q.; Li, L.; Tseng, J.; Chen, M.-C.; Ma, J.-J.; Lu, Y.-R.; Hirofumi, I.; Shao, Y.-C.; Zhao, X.; Hung, S.-F.; Su, Y.; Mu, X.; Hua, W. Exploring the mechanism of surface cationic vacancy induced high activity of metastable lattice oxygen in Li‐and Mn‐rich cathode materials. Angew. Chem. Int. Ed. 2025, e202419664.
[108] Wang, M.; Li, Y.; Jia, J.; Ghosh, T.; Luo, P.; Shen, Y.-J.; Wang, S.; Zhang, J.; Xi, S.; Mi, Z.; Zhang, M.; Leow, W. R.; Johannessen, B.; Aabdin, Z.; Hung, S.-F.; Zhang, J.;* Lum, Y.* Tuning catalyst-support interactions enable steering of electrochemical CO2 reduction pathways. Sci. Adv. 2025, 11, eado5000.
[107] Fan, L.; Li, F.; Liu, T.; Huang, J. E.; Miao, R. K.; Yan, Y.; Feng, S.; Tai, C.-W.; Hung, S.-F.; Tsai, H.-J.; Chen, M.-C.; Bai, Y.; Kim, D.; Park, S.; Papangelakis, P.; Wu, C.; Zeraati, A. S.; Dorakhan, R.; Sun, L.;* Sinton, D.;* Sargent, E. H.*Atomic-level Cu active sites enable energy-efficient CO2 electroreduction to multicarbon products in strong acid, Nature Synth. 2025, 4, 262-270.
[106] Hsiao, Y.-C.; Wu, C.-Y.; Lee, C.-H.; Huang, W.-Y.; Thang, H. V.; Chi, C.-C.; Zeng, W.-J.; Gao, J.-Q.; Lin, C.-Y.; Lin, J.-T.; Gardner, A. M.; Jang, H.; Juang, R.-H.; Liu, Y.-H.; Mekhemer, I. M. A.; Lu, M.-Y.; Lu, Y.-R.; Chou, H.-H.; Kuo, C.-H.; Zhou, S.; Hsu, L.-C.;* Chen, H.-Y. T.; Cowan, A. J.;* Hung, S.-F.;* Yeh, J.-W.;* Yang, T.-H.* A Library of Seed@High-Entropy-Alloy Core–shell Nanocrystals With Controlled Facets for Catalysis. Adv. Mater. 2025, 37, 2411464.
[105] Liu, F.; Deng, J. Su, B.; Peng, K.-S.; Liu, K.;* Lin, X.; Hung, S.-F.,* Chen, X.; Lu, X. F.; Fang, Y.; Zhang, G.; Wang, S.* Poly(triazine imide) Crystals for Efficient CO2 Photoreduction: Surface Pyridine Nitrogen Dominates the Performance. ACS Catal. 2025, 15, 1018-1026.
[104] Zhang, J.; Zhai, X.; Zhao, T.; Yang, X.; Wang, Q.; Chen, Z.; Chen, M.-C.; Ma, J.-J.; Lu, Y.-R.; Hung, S.-F.; Hua, W.* What impact does ammonia have on the microstructure of the precursor and the electrochemical performance of Ni-rich layered oxides? J. Mater. Chem. A 2025, 13, 1181-1190.












