top of page

2021 - 2024 (48)

2024

[92] Lin, Z.-Y.; Chang, Y.-C.; Chen, Y.-Y.; Hsu, Y.-H.; Peng, K.-S.; Hung, S.-F.* Operando Studies for CO2/CO Reduction in Flow-Based Devices. ChemNanoMat 2024, e202400070. (Special collection: Early Career Researcher 2023)

[91] Wang, X.; Lu, R.; Pan, B.; Yang, C.; Zhuansun, M.; Li, J.; Xu, Y.; Hung, S.-F.; Zheng, G.; Li, Y.; Wang, Z.; Wang, Y.* Enhanced Carbon-Carbon Coupling at Interfaces with Abrupt Coordination Number Changes. ChemSusChem 2024, e202400150.

[90] Zhao, S.; Hung, S.-F.; Deng, L.; Zeng, W.-J.; Xiao, T.; Li, S.; Kuo, C.-H.; Chen, H.-Y.; Hu, F.; Peng, S.* Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting. Nature Commun. 2024, 15, 2728.

[89] Duan, X.; Sha, Q.; Li, P.; Li, T.; Yang, G.; Liu, W.; Yu, E.; Zhou, D.; Fang, J.; Chen, W.; Chen Y.; Zheng, L.; Liao, J.; Wang, Z.; Li, Y.; Yang, H.; Zhang, G.; Zhuang, Z.; Hung, S.-F.; Jing, C.; Luo, J.; Bai, L.; Dong, J.; Xiao, H.; Liu, W.; Kuang, Y.;* Liu, B.;* Sun, X.* Dynamic Chloride ion Adsorption on Single Iridium Atom Boosts Seawater Oxidation Catalysis. Nature Commun. 2024, 15, 1973.

[88] Lin, T.-Y.;* Hsieh, C.-F.; Kanai, A.; Yashiro, T.; Zeng, W.-J.; Ma, J.-J.; Hung, S.-F.; Sugiyama, M. Radiation Resistant Chalcopyrite CIGS Solar Cells: Proton Damage Shielding with Cs Treatment and Defect Healing via Heat-light Soaking. J. Mater. Chem. A 2024, 12, 7536-7548. (Cover)

[87] Hao, Y.; Hung, S.-F.; Tian, C.; Wang, L.; Chen, Y.-Y.; Zhao, S.; Peng, K.-S.; Zhang, C.; Zhang, Y.; Kuo, C.-H.; Chen, H.-Y.; Peng, S. Polarized Ultrathin BN Induced Dynamic Electron Interactions for Enhancing Acidic Oxygen Evolution. Angew. Chem. Int. Ed. 2024, 63, e202402018.

[86] Chi, M.;† Zhao, J.;†, Ke, J.;† Liu, Y.; Wang, R.; Wang C.; Hung, S.-F.; Lee, T.-J.; Geng, Z.;* Zeng, J.* Bipyridine-confined Silver Single-atom Catalysts Facilitate In-plane C-O Coupling for Propylene Electrooxidation. Nano Lett. 2024, 24, 1801-1807.

2023

[85] Miao, R. K.; Wang, N.; Hung, S.-F.; Huang, W.-Y.; Zhang, J.; Zhao, Y.; Ou, P.; Wang, S.; Edwards J. P.; Tian, C.; Han, J.; Xu, Y.; Fan, M.; Huang, J. E.; Xiao, Y. C.; Ip, A. H.; Liang, H.; Sargent, E. H.;* Sinton, D.* Electrified Cement Production via Anion-mediated Electrochemical Calcium Extraction. ACS Energy Lett. 2023, 8, 4694-4701.

[84] Hao, Y.; Hung, S.-F.; Zeng, W.-J.; Wang, Y.; Zhang, C.; Kuo, C.-H.; Wang, L.; Zhao, S.; Zhang, Y.; Chen, H.-Y.; Peng, S.* Switching the Oxygen Evolution Mechanism on Atomically Dispersed Ru for Enhanced Acidic Reaction Kinetics. J. Am. Chem. Soc. 2023, 145, 23659-23669.

[83] Jia, J.-F.; Hao, T. T.; Chen, P.-H.; Wu, F.-Y.; Hung, S.-F.;* Suen, N.-T.* Direct electrosynthesis of metal nanoparticle on Ti3C2Tx-Mxene during hydrogen evolution. Inorg. Chem. 2023, 62, 19230-19237. (Cover)

[82] Deng, L.; Hung, S.-F.; Zhao, S.; Zeng, W.-J.; Lin, Z.-Y.; Hu, F.; Xie, Y.; Yin, L.; Li, L.; Peng, S.* Unveiling coordination transformation for dynamically enhanced hydrogen evolution catalysis. Energy Environ. Sci. 2023, 16, 5220-5230.

[81] Yang, X.; Wang, S.; Li, H.; Peng, J.; Zeng, W.-J.; Tsai, H.-J.; Hung, S.-F.; Indris, S.; Li, F.; Hua, W.* Boosting the Ultra-stable High-Na-Content P2-Type Layered Cathode Materials with ZeroStrain Cation Storage via a Lithium Dual-Site Substitution Approach. ACS Nano 2023, 17, 18616-18628.

[80] Deng, L.; Hung, S.-F.; Lin, Z.-Y.; Zhang, Y.;Zhang, C.; Hao, Y.; Liu, S.; Kuo, C.-H.; Chen, H.-Y.; Peng, J.;,Wang, J.; Peng, S.* Valence Oscillation of Ru Active Sites for Efficient and Robust Acidic Water Oxidation. Adv. Mater. 2023, 35, 2305939.

[79] Zhang, Q.;† Tsai, H.-J.;† Li, F.; Ding, J.; He, Q.; Wei, Z.; Liu, Y.; Lin, Z.-Y.; Yang, X.; Chen, Z.; Yang, X.; Tang, Q.;* Yang, H. B.;* Hung, S.-F.;* and Zhai, Y.* Boosting the Proton-coupled Electron Transfer via Fe-P Atomic Pair for Enhanced Electrochemical CO2 Reduction. Angew. Chem. Int. Ed. 2023, 62, e202311550. 

[78] Chen, R.;† Zhao, J.;† Li, Y.; Cui, Y.; Lu, Y.‐R.; Hung, S.‐F.; Wang, S.; Wang, W.; Huo, G.; Zhao, Y.; Liu, W.; Wang, J.; Xiao, H.; Li, X.;* Huang, Y.; Liu, B.* Operando Mössbauer Spectroscopic Tracking the Metastable State of Atomically Dispersed Tin in Copper Oxide for Selective CO2 Electroreduction. J. Am. Chem. Soc. 2023, 145, 20683-20691.

[77] He, Q.; Ding, J.; Tsai, H.-J.; Liu, Y.; Wei, M.; Zhang, Q.; Wei, Z.; Chen, Z.; Huang, J.; Hung, S.-F.;* Yang, H.; Zhai, Y.* Boosting Photocatalytic Hydrogen Peroxide Production by Regulating Electronic Configuration of Single Sb Atoms via Carbon Vacancies in Carbon Nitrides. J. Colloid Interface Sci. 2023, 651, 18-26.

 

[76] Wang, Q.; Wang, H.; Cao, H.; Tung, C.-W.; Liu, W.; Wang, W.; Zhu, C.; Zhang, Z.; Hung, S.-F.; Cai, W.; Cheng, Y.; Chen, H. M.; Wang, Y.-G.; Li, Y.; Yang, H. B.; Huang, Y.; Li, J.; Liu, B. Atomic Mmetal-nonmetal Catalytic Pair Drives Efficient Hydrogen Oxidation Catalysis in Fuel Cells. Nature Catal. 2023, accepted.

[75] Ji, S.-J.; Cao, L.-W.; Zhang, P.; Wang, G.-B.; Lu, Y.-R.; Suen, N.-T.;* Hung, S.-F.;* Chen, H. M.* Dealloying induced zeolite-like metal framework of AB2 Laves phase intermetallic electrocatalysts. J. Am. Chem. Soc. 2023, 145, 17892-17901.

[74] Wu, Q.;† Du, R.;† Wang, P.; Waterhouse, G. I.N.;* Li, J.; Qiu, Y.; Yan, K.; Zhao, Y.; Zhao, W.-W.; Tsai, H.-R.; Chen, M.-C.; Hung, S.-F.;* Wang, X.;* Chen, G.* Nanograin boundary-abundant Cu2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2. ACS Nano 2023, 17, 12884-12894.

[73] Hu, F.; Yu, D.; Zeng, W.-J.; Lin, Z.-Y.; Han, S.; Sun, Y.; Wang, H.; Ren, J.; Hung, S.-F.;* Li, L.;* Peng, S.* Active Site Tailoring of Metal-Organic Frameworks for Highly Efficient Oxygen Evolution. Adv. Energy Mater. 2023, 2301224.

[72] Ren, X.; Zhao, J.; Li, X.; Shao, J.; Pan, B.; Salamé, A.; Boutin, E.; Groizard, T.; Wang, S.; Ding, J.; Zhang, X.; Huang, W.-Y.; Zeng, W.-J.; Liu, C.; Li, Y.; Hung, S.-F.;* Huang, Y.; Robert, M.;* Liu, B.* In-Situ Spectroscopic Probe of the Intrinsic Structure Feature of Single-Atom Center in Electrochemical CO/CO2 Reduction to Methanol with a Phthalocyanine Cobalt Complex. Nature Commun. 2023, 14, 3401.

[71] Wu, F.-Y.; Tsai, H.-J.; Lee, T.-J.; Lin, Z.-Y.; Peng, K.-S.; Chen, P.-H.; Hiraoka, N.; Liao, Y.-F.; Hu, C.-W.; Hsu, S.-H.; Lu, Y.-R.;* Hung, S.-F.* Copper-Barium-Decorated-Carbon-Nanotube Composite for Electrocatalytic CO2 Reduction to C2 Products. J. Mater. Chem. A 2023, 11, 13217-13222. (Themed collection: Journal of Materials Chemistry A Emerging Investigators) 

[70] Fan, M.;† Miao, R. K.;† Ou. P.;† Xu, Y.;† Lin, Z.-Y.; Lee, T.-.; Hung, S.-F.; Xie, K.; Huang, J. E.; Ni, W.; Li, J.; Zhao, Y.; Ozden, A.; O’Brien, C. P.; Chen, Y.; Xiao, Y. C.; Liu, S.; Wicks, J.; Wang, X.; Abed, J.; Shirzadi, E.; Sargent, E. H.;* Sinton, D.* Single-site Decorated Copper Enables Energy- and Carbon-efficient Electroproduction of Synthetic Methane. Nature Commun. 2023, 14, 3314.

 

[69] Wang, N.; Ou, P.; Chang, Y.; Wang, Z.; Hung, S.-F.; Abed, J.; Ozden, A.; Yan, Y.; Peng, T.; Xu, A.; Li, Y.; Zhuang, T.; Wicks, J.; Lu, Y.-R.; Rasouli, A. S.; Luo, M.; Li, C. Y.; Wang, X.; Dong, C.-L.; Sinton, D.; Liang, H.; Sargent, E. H. Doping Shortens the Metal:Metal Distance and Promotes OH Coverage in Non-Noble Acidic OER Catalysts. J. Am. Chem. Soc. 2023, 145, 7829-7836.

[68] Wei, Z.; Ding, J.; Duan, X.; Chen, G.-L.; Wu, F.-Y.; Zhang, L.; Yang, X.; Zhang, Q.; He, Q.; Chen, Z.; Huang, J.; Hung, S.-F.;* Yang, X.;* Zhai, Y.* Enhancing Selective Electrochemical CO2 Reduction by In Situ Constructing Tensile Strained Cu Catalysts. ACS Catal. 2023, 13, 4711-4718.

 

[67] Chang, C.-J.; Lai, Y.-A.; Chu, Y.-C.; Peng, C.-K.; Tan, H.-Y.; Pao, C.-W.; Lin, Y.-G.; Hung, S.- F.; Chen, H.-C.; Chen, H. M. Lewis Acidic Support Boosts C-C coupling in Pulsed Electrochemical CO2 Reaction. J. Am. Chem. Soc. 2023, 145, 6953-6965.

[66] Deng, Y.; Zhao, J.; Wang, S.; Chen, R.; Tsai, H.-J.; Zeng, W.-J.; Hung, S.-F.; Xu, W.; Wang, J.; Li, X.; Liu, B.; Huang, Y. Operando Spectroscopic Analysis of Axial Oxygen Coordinated Single-Sn-Atom Sites for Electrochemical CO2 Reduction. J. Am. Chem. Soc. 2023, 145, 7242-7251. (Cover) 

[65] Wang, Q.; Qiu, C.; Gan, L.-Y.; Ding; J., Li, F.; Wang, T.; Liu, Y.; Wang, Y.;, Tao, H.; Hung, S.-F.;* Yang, H.;* Liu, B.* Boosting Activity of Fe-N4 Sites in Single-Fe-Atom Catalysts via Sulfur in the Second Coordination Sphere for Direct Methanol Fuel Cells. Cell Rep. Phys. Sci. 2023, 4, 101330.

[64] Wang, N.†; Ou, P.†; Hung, S.-F.; Huang, J. E.; Ozden, A.; Grigioni, I.; Chen, C.; Abed, J.; Yan, Y.; Bertens, K.; Peng, T.; Wang, Z.; Ip, A. H.; Sinton, D.; Liu, Y.; Liang, H.; Sargent, E. H. Strong-proton-adsorption Co-based electrocatalysts for active and stable neutral seawater splitting. Adv. Mater. 2023, 35, 2210057. (†These authors equally contribute to this work)

[63] Luo, M.; Wang, Z.; Li, F.; Ozden, A.; Hung, S.-F.; Wang, Y.; Li, J.; Nam, D.-H.; Li, C. Y.; Xu, Y.; Lum, Y.; Ren, Y.; Fan, L.; Dinh, C.-T.; Liu, Y.; Chen, B.; Wicks, J.; Chen, H.; Sinton, D.; Sargent, E. H. Coordination Polymer Electrocatalysts Enable Efficient CO-to-acetate Conversion by Stabilizing Isolated Cu Sites. Adv. Mater. 2023, 35, 2209567.

[62] Hua, W.; Zhang, J.; Wang, S.; Zheng, Y.; Li, H.; Tseng, J.; Wu, Z.; Shen, C.-H.; Dolotko, O.; Liu, H.; Hung, S.-F.; Tang, W.; Li, M.; Knapp, M.; Ehrenberg, H.; Indris, S.; Guo, X. Long-Range Cationic Disordering Induces two Distinct Degradation Pathways in Co-free Ni-rich Layered Cathodes. Angew. Chem. Int. Ed. 2023, 62, e202214880.

[61] Liang, Y.; Zhao, J.; Yang, Y.; Hung, S.-F.; Li, J.; Zhang, S.; Zhao, Y.; Zhang, A.; Wang, C.;  Appadoo, D.;  Zhang, L.; Geng, Z.; Li, F.; Zeng, J. Neighboring copper sites stabilized in coordination polymers for efficient electrochemical C-C coupling. Nature Commun. 2023, 14, 474.

2022

[60] Lee, S.; Park, S. M.; Jung, E. D.; Zhu, T.; Pina, J. M.; Anwar, H.; Wu, F.-Y.; Chen, G.-L.; Dong, Y.; Cui, T.; Wei, M.; Bertens, K.; Wang, Y.-K.; Chen, B.; Filleter, T.; Hung, S.-F.; Won, Y.-H.; Kim, K.-H.; Hoogland, S.; Sargent, E. H. Dipole Engineering Through the Orientation of Interface Molecules for Efficient InP Quantum Dot Light-Emitting Diodes. J. Am. Chem. Soc. 2022144, 20923-20930.

[59] Xu, A.;† Hung, S.-F.; Yan, Y.; Rasouli, A. S.; Ozden, A.; Huang, E. J.; Grigioni, I.; Li, F.; Luo, M.; Wang, Y.; Wang, X.; Abed, J.; Wang, Z.; Nam, D.-H.; Li, C. Y.; Ip, A.; Sinton, D.; Dong, C.; Li, X.; Sargent, E. H. Stable Cu: Alkali Earth Metal Oxide Interfaces for Electrochemical CO2 to Alcohols by Selective Hydrogenation. Nature Catal. 2022, 5, 1081. (†These authors equally contribute to this work).

[58] Zhang, J.; Cao, X.; Jiang, Y.; Hung, S.-F.; Liu, W.; Yang, H.; Xu, C.-Q.; Li, D.-S.; Zhang, T.; Li, Y.; Li, J.; Liu, B. Surface Enrichment of Ir on IrRu Alloy for Efficient and Stable Water Oxidation Catalysis in Acid. Chem. Sci. 2022, 13, 12114-12121.

[57] Lu, Y.-H.; Tsai, H.-J.; Huang, W.-Y.; Lee, T.-J.; Lin, Z.-Y.; Hsu, S.-H.;* Hung, S.-F.* A Nitrogen-doped Graphene-supported Nickel-single-atom Catalyst in the Flow Cell Meets the Industrial Criteria of Carbon Dioxide Reduction Reaction to Carbon Monoxide. Front. Catal. 2022, 2, 915971. 

[56] Lu, Y.-R.; Chen, H.-C.; Liu, K.; Liu, M.; Chan, T.-S.; Hung, S.-F.* Turn the Trash into Treasure: Egg-White-Derived Single-Atom Electrocatalysts Boost Oxygen Reduction Reaction. ACS Sustain. Chem. Eng. 2022, 10, 6736-6742. (Cover)

[55] Rasouli, A. S.; Wang, X.; Wick, J.; Dinh, C.-T.; Abed, J.; Wu, F.-Y.; Hung, S.-F.; Bertens, K.; Huang, J. E.; Sargent, E. H. Disrupted C-C coupling enables efficient methane electroproduction on CuAlGa catalysts. Chem Catal. 2022, 2, 908-916.

[54] Hung, S.-F.;* Wu, F.-Y.; Lu, Y.-H.; Lee, T.-J.; Tsai, H.-J.; Chen, P.-H.; Lin, Z.-Y.; Chen, G.-L.; Huang, W.-Y.; Zeng, W.-J. Operando X-ray Absorption Spectroscopic Studies of Carbon Dioxide Reduction Reaction in a Modified Flow Cell. Catal. Sci. Technol. 2022, 12, 2739-2743. (themed collection: In situ and operando spectroscopy in catalysis) (Back Cover)

[53] Chang, C.-C.; Ku, M.-S.; Lien, W.-H.; Hung, S.-F. Unveiling the Bonding Nature for C3 Intermediates in CO2 Reduction Reaction Through Oxygen-Deficient Cu2O(110) Surface - A DFT Study. J. Phys. Chem. C 2022, 126, 5502-5512. (Cover)

[52] Wang, X.; Ou, P.; Ozden, A.; Hung, S.-F.; Tam, J.; Gabardo C. M.; Howe, J. Y.; Sisler, J.; Bertens, K.; Garcia de Arquer, F. P.; Miao, R. K.; O’Brien, C. P.; Wang, Z.; Abed, J.; Sun, M.; Ip, A. H.; Sinton, D.; Sargent, E. H. Efficient electrosynthesis of C3 fuel from carbon monoxide. Nature Energy 2022, 7, 170-176.

[51] Hung, S.-F.; Xu, A.; Wang, X.; Li, F.; Hsu, S.-H.; Li, Y.; Wick, J.; Cervantes, E. G.; Rasouli, A. S.; Li, C. Y.; Luo, M.; Nam, D.-H.; Wang, N.; Peng, T.; Yan, Y.; Lee, G.; Sargent, E. H. A Metal- Supported Single-Atom Catalytic Site Enables Carbon Dioxide Hydrogenation. Nature Commun. 202213, 819.

2021

[50] Wang, N.;† Xu, A.;† Ou, P.;† Hung, S.-F.; Ozden, A.; Lu, Y.-R.; Abed, J.; Wang, Z.; Yan, Y.; Sun, M.; Xia, Y.; Han, M.; Han, J.; Yao, K.; Wu, F.-Y.; Chen, P. H.; Vomiero, A.; Seifitokaldani, A.; Sun, X.; Sinton, D.; Liu, Y.; Sargent, E. H.; Liang, H. Boride-Derived Oxygen-Evolution Catalysts. Nature Commun. 2021, 12, 6089. (†These authors equally contribute to this work).

[49] Peng, T.; Zhuang, T.-T.; Yan, Y. ; Qian, J.; Dick, G.; Behaghel de Bueren, J.; Hung, S.-F.; Zhang, Y.; Wang, Z.; Wicks, J.; Garcia de Arquer, F. P.; Abed, J.; Wang, N.; Sedighian Rasouli, A.; Lee, G.; Wang, M. ; He, D.; Wang, Z.; Liang, Z.; Song, L.; Wang, X.; Chen, B.; Ozden, A.; Lum, Y.; Leow, W. R.; Luo, M.; Motta Meira, D.; Ip, A.; Luterbacher, J.; Zhao, W.; Sargent, E. H. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 2021, 143, 17226-17235.

[48] Chen, Z.-Y.; Niu, H.; Ding, J.; Liu, H.; Zuo, W.; Han L.; Guo, Y.;* Hung, S.-F.;* Zhai, Y.* Unraveling the Origin of Sulfur-doped Fe-N-C Single Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Fe-spin State Tuning. Angew. Chem. Int. Ed. 2021, 60, 25404-25410. 

[47] Zhang, J.; Xu, W.; Liu, Y.; Hung, S.-F.; Liu, W.; Lam, Z.; Tao, H. B.; Yang, H. B.; Cai, W.; Xiao, H.; Chen, H.; Liu, B. Precise Tuning of Intermediate Adsorption Energy on Bimetallic Surface for Boosting Oxygen Reduction Catalysis. Nano Lett. 2021, 21, 7753-7760.

[46] Li, X.; Zeng, Y.; Tung, C.-W.; Lu, Y.-R.; Baskaran, S.; Hung, S.-F.; Wang, S.; Xu, C.-Q.; Wang, J.; Chan, T.-S.; Chen, H. M.; Jiang, J.; Yu, Q.; Huang, Y.; Li, J.; Zhang, T.; Liu, B. Unveiling the In-Situ Generation of Monovalent Fe(I) Site in Single-Fe-Atom Catalyst for Electrochemical CO2 Reduction. ACS Catal. 2021, 11, 7292-7301.

[45] Xu, Y.; Li, F.; Xu, A.; Edwards, J. P.; Hung, S.-F.; Gabardo C. M.; O’Brien, C. P.; Liu, S.; Wang, X.; Li, Y.; Wicks, J.; Miao, R. K.; Liu, Y.; Li, J.; Huang, J. E.; Abed, J.; Wang, Y.; Sargent, E. H.; Sinton, D. An Ultra-low Coordinated Copper Catalyst for Stable and Scalable Electrochemical CO2 methanation. Nature Commun. 2021, 12, 2932.

inocaj.2023.62.issue-47.xlargecover.jpg
10 jacsat.2023.145.issue-13.xlargecover-4.jpeg
9 ascecg_v010i020-2.jpeg
8 d2cy90035a.jpg
7 jpccck_v126i012.jpg
6 Liu_et_al-2020-Angewandte_Chemie_Inter
5 acscii_v005i012.jpg
4 c7cs90005h.jpg
1 Hung_et_al-2018-Advanced_Energy_Materi
2 Hung_et_al-2016-Advanced_Energy_Materi
3 c6cc90038k.jpg
bottom of page