top of page

JOURNAL PUBLICATIONS

2024

[89] Duan, X.; Sha, Q.; Li, P.; Li, T.; Yang, G.; Liu, W.; Yu, E.; Zhou, D.; Fang, J.; Chen, W.; Chen Y.; Zheng, L.; Liao, J.; Wang, Z.; Li, Y.; Yang, H.; Zhang, G.; Zhuang, Z.; Hung, S.-F.; Jing, C.; Luo, J.; Bai, L.; Dong, J.; Xiao, H.; Liu, W.; Kuang, Y.;* Liu, B.;* Sun, X.* Dynamic Chloride ion Adsorption on Single Iridium Atom Boosts Seawater Oxidation Catalysis. Nature Commun. 2024, accepted.

[88] Lin, T.-Y.;* Hsieh, C.-F.; Kanai, A.; Yashiro, T.; Zeng, W.-J.; Ma, J.-J.; Hung, S.-F.; Sugiyama, M. Radiation Resistant Chalcopyrite CIGS Solar Cells: Proton Damage Shielding with Cs Treatment and Defect Healing via Heat-light Soaking. J. Mater. Chem. A 2024, accepted.

[87] Hao, Y.; Hung, S.-F.; Tian, C.; Wang, L.; Chen, Y.-Y.; Zhao, S.; Peng, K.-S.; Zhang, C.; Zhang, Y.; Kuo, C.-H.; Chen, H.-Y.; Peng, S. Polarized Ultrathin BN Induced Dynamic Electron Interactions for Enhancing Acidic Oxygen Evolution. Angew. Chem. Int. Ed. 2024, accepted.

[86] Chi, M.;† Zhao, J.;†, Ke, J.;† Liu, Y.; Wang, R.; Wang C.; Hung, S.-F.; Lee, T.-J.; Geng, Z.;* Zeng, J.* Bipyridine-confined Silver Single-atom Catalysts Facilitate In-plane C-O Coupling for Propylene Electrooxidation. Nano Lett. 2024, 24, 1801-1807.

2023

[85] Miao, R. K.; Wang, N.; Hung, S.-F.; Huang, W.-Y.; Zhang, J.; Zhao, Y.; Ou, P.; Wang, S.; Edwards J. P.; Tian, C.; Han, J.; Xu, Y.; Fan, M.; Huang, J. E.; Xiao, Y. C.; Ip, A. H.; Liang, H.; Sargent, E. H.;* Sinton, D.* Electrified Cement Production via Anion-mediated Electrochemical Calcium Extraction. ACS Energy Lett. 2023, 8, 4694-4701.

[84] Hao, Y.; Hung, S.-F.; Zeng, W.-J.; Wang, Y.; Zhang, C.; Kuo, C.-H.; Wang, L.; Zhao, S.; Zhang, Y.; Chen, H.-Y.; Peng, S.* Switching the Oxygen Evolution Mechanism on Atomically Dispersed Ru for Enhanced Acidic Reaction Kinetics. J. Am. Chem. Soc. 2023, 145, 23659-23669.

[83] Jia, J.-F.; Hao, T. T.; Chen, P.-H.; Wu, F.-Y.; Hung, S.-F.;* Suen, N.-T.* Direct electrosynthesis of metal nanoparticle on Ti3C2Tx-Mxene during hydrogen evolution. Inorg. Chem. 2023, 62, 19230-19237. (Cover)

[82] Deng, L.; Hung, S.-F.; Zhao, S.; Zeng, W.-J.; Lin, Z.-Y.; Hu, F.; Xie, Y.; Yin, L.; Li, L.; Peng, S.* Unveiling coordination transformation for dynamically enhanced hydrogen evolution catalysis. Energy Environ. Sci. 2023, 16, 5220-5230.

[81] Yang, X.; Wang, S.; Li, H.; Peng, J.; Zeng, W.-J.; Tsai, H.-J.; Hung, S.-F.; Indris, S.; Li, F.; Hua, W.* Boosting the Ultra-stable High-Na-Content P2-Type Layered Cathode Materials with ZeroStrain Cation Storage via a Lithium Dual-Site Substitution Approach. ACS Nano 2023, 17, 18616-18628.

[80] Deng, L.; Hung, S.-F.; Lin, Z.-Y.; Zhang, Y.;Zhang, C.; Hao, Y.; Liu, S.; Kuo, C.-H.; Chen, H.-Y.; Peng, J.;,Wang, J.; Peng, S.* Valence Oscillation of Ru Active Sites for Efficient and Robust Acidic Water Oxidation. Adv. Mater. 2023, 35, 2305939.

[79] Zhang, Q.;† Tsai, H.-J.;† Li, F.; Ding, J.; He, Q.; Wei, Z.; Liu, Y.; Lin, Z.-Y.; Yang, X.; Chen, Z.; Yang, X.; Tang, Q.;* Yang, H. B.;* Hung, S.-F.;* and Zhai, Y.* Boosting the Proton-coupled Electron Transfer via Fe-P Atomic Pair for Enhanced Electrochemical CO2 Reduction. Angew. Chem. Int. Ed. 2023, 62, e202311550. 

[78] Chen, R.;† Zhao, J.;† Li, Y.; Cui, Y.; Lu, Y.‐R.; Hung, S.‐F.; Wang, S.; Wang, W.; Huo, G.; Zhao, Y.; Liu, W.; Wang, J.; Xiao, H.; Li, X.;* Huang, Y.; Liu, B.* Operando Mössbauer Spectroscopic Tracking the Metastable State of Atomically Dispersed Tin in Copper Oxide for Selective CO2 Electroreduction. J. Am. Chem. Soc. 2023, 145, 20683-20691.

[77] He, Q.; Ding, J.; Tsai, H.-J.; Liu, Y.; Wei, M.; Zhang, Q.; Wei, Z.; Chen, Z.; Huang, J.; Hung, S.-F.;* Yang, H.; Zhai, Y.* Boosting Photocatalytic Hydrogen Peroxide Production by Regulating Electronic Configuration of Single Sb Atoms via Carbon Vacancies in Carbon Nitrides. J. Colloid Interface Sci. 2023, 651, 18-26.

 

[76] Wang, Q.; Wang, H.; Cao, H.; Tung, C.-W.; Liu, W.; Wang, W.; Zhu, C.; Zhang, Z.; Hung, S.-F.; Cai, W.; Cheng, Y.; Chen, H. M.; Wang, Y.-G.; Li, Y.; Yang, H. B.; Huang, Y.; Li, J.; Liu, B. Atomic Mmetal-nonmetal Catalytic Pair Drives Efficient Hydrogen Oxidation Catalysis in Fuel Cells. Nature Catal. 2023, accepted.

[75] Ji, S.-J.; Cao, L.-W.; Zhang, P.; Wang, G.-B.; Lu, Y.-R.; Suen, N.-T.;* Hung, S.-F.;* Chen, H. M.* Dealloying induced zeolite-like metal framework of AB2 Laves phase intermetallic electrocatalysts. J. Am. Chem. Soc. 2023, 145, 17892-17901.

[74] Wu, Q.;† Du, R.;† Wang, P.; Waterhouse, G. I.N.;* Li, J.; Qiu, Y.; Yan, K.; Zhao, Y.; Zhao, W.-W.; Tsai, H.-R.; Chen, M.-C.; Hung, S.-F.;* Wang, X.;* Chen, G.* Nanograin boundary-abundant Cu2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2. ACS Nano 2023, 17, 12884-12894.

[73] Hu, F.; Yu, D.; Zeng, W.-J.; Lin, Z.-Y.; Han, S.; Sun, Y.; Wang, H.; Ren, J.; Hung, S.-F.;* Li, L.;* Peng, S.* Active Site Tailoring of Metal-Organic Frameworks for Highly Efficient Oxygen Evolution. Adv. Energy Mater. 2023, 2301224.

[72] Ren, X.; Zhao, J.; Li, X.; Shao, J.; Pan, B.; Salamé, A.; Boutin, E.; Groizard, T.; Wang, S.; Ding, J.; Zhang, X.; Huang, W.-Y.; Zeng, W.-J.; Liu, C.; Li, Y.; Hung, S.-F.;* Huang, Y.; Robert, M.;* Liu, B.* In-Situ Spectroscopic Probe of the Intrinsic Structure Feature of Single-Atom Center in Electrochemical CO/CO2 Reduction to Methanol with a Phthalocyanine Cobalt Complex. Nature Commun. 2023, 14, 3401.

[71] Wu, F.-Y.; Tsai, H.-J.; Lee, T.-J.; Lin, Z.-Y.; Peng, K.-S.; Chen, P.-H.; Hiraoka, N.; Liao, Y.-F.; Hu, C.-W.; Hsu, S.-H.; Lu, Y.-R.;* Hung, S.-F.* Copper-Barium-Decorated-Carbon-Nanotube Composite for Electrocatalytic CO2 Reduction to C2 Products. J. Mater. Chem. A 2023, 11, 13217-13222. (Themed collection: Journal of Materials Chemistry A Emerging Investigators) 

[70] Fan, M.;† Miao, R. K.;† Ou. P.;† Xu, Y.;† Lin, Z.-Y.; Lee, T.-.; Hung, S.-F.; Xie, K.; Huang, J. E.; Ni, W.; Li, J.; Zhao, Y.; Ozden, A.; O’Brien, C. P.; Chen, Y.; Xiao, Y. C.; Liu, S.; Wicks, J.; Wang, X.; Abed, J.; Shirzadi, E.; Sargent, E. H.;* Sinton, D.* Single-site Decorated Copper Enables Energy- and Carbon-efficient Electroproduction of Synthetic Methane. Nature Commun. 2023, 14, 3314.

 

[69] Wang, N.; Ou, P.; Chang, Y.; Wang, Z.; Hung, S.-F.; Abed, J.; Ozden, A.; Yan, Y.; Peng, T.; Xu, A.; Li, Y.; Zhuang, T.; Wicks, J.; Lu, Y.-R.; Rasouli, A. S.; Luo, M.; Li, C. Y.; Wang, X.; Dong, C.-L.; Sinton, D.; Liang, H.; Sargent, E. H. Doping Shortens the Metal:Metal Distance and Promotes OH Coverage in Non-Noble Acidic OER Catalysts. J. Am. Chem. Soc. 2023, 145, 7829-7836.

[68] Wei, Z.; Ding, J.; Duan, X.; Chen, G.-L.; Wu, F.-Y.; Zhang, L.; Yang, X.; Zhang, Q.; He, Q.; Chen, Z.; Huang, J.; Hung, S.-F.;* Yang, X.;* Zhai, Y.* Enhancing Selective Electrochemical CO2 Reduction by In Situ Constructing Tensile Strained Cu Catalysts. ACS Catal. 2023, 13, 4711-4718.

 

[67] Chang, C.-J.; Lai, Y.-A.; Chu, Y.-C.; Peng, C.-K.; Tan, H.-Y.; Pao, C.-W.; Lin, Y.-G.; Hung, S.- F.; Chen, H.-C.; Chen, H. M. Lewis Acidic Support Boosts C-C coupling in Pulsed Electrochemical CO2 Reaction. J. Am. Chem. Soc. 2023, 145, 6953-6965.

[66] Deng, Y.; Zhao, J.; Wang, S.; Chen, R.; Tsai, H.-J.; Zeng, W.-J.; Hung, S.-F.; Xu, W.; Wang, J.; Li, X.; Liu, B.; Huang, Y. Operando Spectroscopic Analysis of Axial Oxygen Coordinated Single-Sn-Atom Sites for Electrochemical CO2 Reduction. J. Am. Chem. Soc. 2023, 145, 7242-7251. (Cover) 

[65] Wang, Q.; Qiu, C.; Gan, L.-Y.; Ding; J., Li, F.; Wang, T.; Liu, Y.; Wang, Y.;, Tao, H.; Hung, S.-F.;* Yang, H.;* Liu, B.* Boosting Activity of Fe-N4 Sites in Single-Fe-Atom Catalysts via Sulfur in the Second Coordination Sphere for Direct Methanol Fuel Cells. Cell Rep. Phys. Sci. 2023, 4, 101330.

[64] Wang, N.†; Ou, P.†; Hung, S.-F.; Huang, J. E.; Ozden, A.; Grigioni, I.; Chen, C.; Abed, J.; Yan, Y.; Bertens, K.; Peng, T.; Wang, Z.; Ip, A. H.; Sinton, D.; Liu, Y.; Liang, H.; Sargent, E. H. Strong-proton-adsorption Co-based electrocatalysts for active and stable neutral seawater splitting. Adv. Mater. 2023, 35, 2210057. (†These authors equally contribute to this work)

[63] Luo, M.; Wang, Z.; Li, F.; Ozden, A.; Hung, S.-F.; Wang, Y.; Li, J.; Nam, D.-H.; Li, C. Y.; Xu, Y.; Lum, Y.; Ren, Y.; Fan, L.; Dinh, C.-T.; Liu, Y.; Chen, B.; Wicks, J.; Chen, H.; Sinton, D.; Sargent, E. H. Coordination Polymer Electrocatalysts Enable Efficient CO-to-acetate Conversion by Stabilizing Isolated Cu Sites. Adv. Mater. 2023, 35, 2209567.

[62] Hua, W.; Zhang, J.; Wang, S.; Zheng, Y.; Li, H.; Tseng, J.; Wu, Z.; Shen, C.-H.; Dolotko, O.; Liu, H.; Hung, S.-F.; Tang, W.; Li, M.; Knapp, M.; Ehrenberg, H.; Indris, S.; Guo, X. Long-Range Cationic Disordering Induces two Distinct Degradation Pathways in Co-free Ni-rich Layered Cathodes. Angew. Chem. Int. Ed. 2023, 62, e202214880.

[61] Liang, Y.; Zhao, J.; Yang, Y.; Hung, S.-F.; Li, J.; Zhang, S.; Zhao, Y.; Zhang, A.; Wang, C.;  Appadoo, D.;  Zhang, L.; Geng, Z.; Li, F.; Zeng, J. Neighboring copper sites stabilized in coordination polymers for efficient electrochemical C-C coupling. Nature Commun. 2023, 14, 474.

2022

[60] Lee, S.; Park, S. M.; Jung, E. D.; Zhu, T.; Pina, J. M.; Anwar, H.; Wu, F.-Y.; Chen, G.-L.; Dong, Y.; Cui, T.; Wei, M.; Bertens, K.; Wang, Y.-K.; Chen, B.; Filleter, T.; Hung, S.-F.; Won, Y.-H.; Kim, K.-H.; Hoogland, S.; Sargent, E. H. Dipole Engineering Through the Orientation of Interface Molecules for Efficient InP Quantum Dot Light-Emitting Diodes. J. Am. Chem. Soc. 2022144, 20923-20930.

[59] Xu, A.;† Hung, S.-F.; Yan, Y.; Rasouli, A. S.; Ozden, A.; Huang, E. J.; Grigioni, I.; Li, F.; Luo, M.; Wang, Y.; Wang, X.; Abed, J.; Wang, Z.; Nam, D.-H.; Li, C. Y.; Ip, A.; Sinton, D.; Dong, C.; Li, X.; Sargent, E. H. Stable Cu: Alkali Earth Metal Oxide Interfaces for Electrochemical CO2 to Alcohols by Selective Hydrogenation. Nature Catal. 2022, 5, 1081. (†These authors equally contribute to this work).

[58] Zhang, J.; Cao, X.; Jiang, Y.; Hung, S.-F.; Liu, W.; Yang, H.; Xu, C.-Q.; Li, D.-S.; Zhang, T.; Li, Y.; Li, J.; Liu, B. Surface Enrichment of Ir on IrRu Alloy for Efficient and Stable Water Oxidation Catalysis in Acid. Chem. Sci. 2022, 13, 12114-12121.

[57] Lu, Y.-H.; Tsai, H.-J.; Huang, W.-Y.; Lee, T.-J.; Lin, Z.-Y.; Hsu, S.-H.;* Hung, S.-F.* A Nitrogen-doped Graphene-supported Nickel-single-atom Catalyst in the Flow Cell Meets the Industrial Criteria of Carbon Dioxide Reduction Reaction to Carbon Monoxide. Front. Catal. 2022, 2, 915971. 

[56] Lu, Y.-R.; Chen, H.-C.; Liu, K.; Liu, M.; Chan, T.-S.; Hung, S.-F.* Turn the Trash into Treasure: Egg-White-Derived Single-Atom Electrocatalysts Boost Oxygen Reduction Reaction. ACS Sustain. Chem. Eng. 2022, 10, 6736-6742. (Cover)

[55] Rasouli, A. S.; Wang, X.; Wick, J.; Dinh, C.-T.; Abed, J.; Wu, F.-Y.; Hung, S.-F.; Bertens, K.; Huang, J. E.; Sargent, E. H. Disrupted C-C coupling enables efficient methane electroproduction on CuAlGa catalysts. Chem Catal. 2022, 2, 908-916.

[54] Hung, S.-F.;* Wu, F.-Y.; Lu, Y.-H.; Lee, T.-J.; Tsai, H.-J.; Chen, P.-H.; Lin, Z.-Y.; Chen, G.-L.; Huang, W.-Y.; Zeng, W.-J. Operando X-ray Absorption Spectroscopic Studies of Carbon Dioxide Reduction Reaction in a Modified Flow Cell. Catal. Sci. Technol. 2022, 12, 2739-2743. (themed collection: In situ and operando spectroscopy in catalysis) (Back Cover)

[53] Chang, C.-C.; Ku, M.-S.; Lien, W.-H.; Hung, S.-F. Unveiling the Bonding Nature for C3 Intermediates in CO2 Reduction Reaction Through Oxygen-Deficient Cu2O(110) Surface - A DFT Study. J. Phys. Chem. C 2022, 126, 5502-5512. (Cover)

[52] Wang, X.; Ou, P.; Ozden, A.; Hung, S.-F.; Tam, J.; Gabardo C. M.; Howe, J. Y.; Sisler, J.; Bertens, K.; Garcia de Arquer, F. P.; Miao, R. K.; O’Brien, C. P.; Wang, Z.; Abed, J.; Sun, M.; Ip, A. H.; Sinton, D.; Sargent, E. H. Efficient electrosynthesis of C3 fuel from carbon monoxide. Nature Energy 2022, 7, 170-176.

[51] Hung, S.-F.; Xu, A.; Wang, X.; Li, F.; Hsu, S.-H.; Li, Y.; Wick, J.; Cervantes, E. G.; Rasouli, A. S.; Li, C. Y.; Luo, M.; Nam, D.-H.; Wang, N.; Peng, T.; Yan, Y.; Lee, G.; Sargent, E. H. A Metal- Supported Single-Atom Catalytic Site Enables Carbon Dioxide Hydrogenation. Nature Commun. 202213, 819.

2021

[50] Wang, N.;† Xu, A.;† Ou, P.;† Hung, S.-F.; Ozden, A.; Lu, Y.-R.; Abed, J.; Wang, Z.; Yan, Y.; Sun, M.; Xia, Y.; Han, M.; Han, J.; Yao, K.; Wu, F.-Y.; Chen, P. H.; Vomiero, A.; Seifitokaldani, A.; Sun, X.; Sinton, D.; Liu, Y.; Sargent, E. H.; Liang, H. Boride-Derived Oxygen-Evolution Catalysts. Nature Commun. 2021, 12, 6089. (†These authors equally contribute to this work).

[49] Peng, T.; Zhuang, T.-T.; Yan, Y. ; Qian, J.; Dick, G.; Behaghel de Bueren, J.; Hung, S.-F.; Zhang, Y.; Wang, Z.; Wicks, J.; Garcia de Arquer, F. P.; Abed, J.; Wang, N.; Sedighian Rasouli, A.; Lee, G.; Wang, M. ; He, D.; Wang, Z.; Liang, Z.; Song, L.; Wang, X.; Chen, B.; Ozden, A.; Lum, Y.; Leow, W. R.; Luo, M.; Motta Meira, D.; Ip, A.; Luterbacher, J.; Zhao, W.; Sargent, E. H. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 2021, 143, 17226-17235.

[48] Chen, Z.-Y.; Niu, H.; Ding, J.; Liu, H.; Zuo, W.; Han L.; Guo, Y.;* Hung, S.-F.;* Zhai, Y.* Unraveling the Origin of Sulfur-doped Fe-N-C Single Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Fe-spin State Tuning. Angew. Chem. Int. Ed. 2021, 60, 25404-25410. 

[47] Zhang, J.; Xu, W.; Liu, Y.; Hung, S.-F.; Liu, W.; Lam, Z.; Tao, H. B.; Yang, H. B.; Cai, W.; Xiao, H.; Chen, H.; Liu, B. Precise Tuning of Intermediate Adsorption Energy on Bimetallic Surface for Boosting Oxygen Reduction Catalysis. Nano Lett. 2021, 21, 7753-7760.

[46] Li, X.; Zeng, Y.; Tung, C.-W.; Lu, Y.-R.; Baskaran, S.; Hung, S.-F.; Wang, S.; Xu, C.-Q.; Wang, J.; Chan, T.-S.; Chen, H. M.; Jiang, J.; Yu, Q.; Huang, Y.; Li, J.; Zhang, T.; Liu, B. Unveiling the In-Situ Generation of Monovalent Fe(I) Site in Single-Fe-Atom Catalyst for Electrochemical CO2 Reduction. ACS Catal. 2021, 11, 7292-7301.

[45] Xu, Y.; Li, F.; Xu, A.; Edwards, J. P.; Hung, S.-F.; Gabardo C. M.; O’Brien, C. P.; Liu, S.; Wang, X.; Li, Y.; Wicks, J.; Miao, R. K.; Liu, Y.; Li, J.; Huang, J. E.; Abed, J.; Wang, Y.; Sargent, E. H.; Sinton, D. An Ultra-low Coordinated Copper Catalyst for Stable and Scalable Electrochemical CO2 methanation. Nature Commun. 2021, 12, 2932.

2020

[44] Li, X.; Cao, C.-S.; Hung, S.-F.; Lu, Y.-R.; Cai, W.; Rykov, A. I.; Miao, S.; Xi, S.; Yang, H.; Hu, Z.; Wang, J.; Zhao, J.; Alp, E. E.; Xu, W.; Chan, T.-S.; Chen, H.; Xiong, Q.; Xiao, H.; Huang, Y.; Li, J.; Zhang, T.; Liu, B. Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. Chem 2020, 6, 3440-3454.

[43] Li, Y.; Xu, A.; Lum, Y.; Wang, X.; Hung, S.-F.; Chen, B.; Wang, Z.; Xu, Y.; Li, F.; Abed, J.; Rasouli, A. S.; Wick, J.; Sagar, L. K.; Peng, T.; Ip, A. H.; Sinton, D.; Jiang, H.; Li, C.; Sargent, E. H. Promoting CO2 Methanation via Ligand-stabilized Metal Oxide Clusters as Hydrogen- donating Motifs. Nature Commun. 2020, 11, 6190.

[42] Hung, S.-F.* Electrochemical Flow Systems Enable Renewable Energy Industrial Chain of CO2 Reduction. Pure Appl. Chem. 2020, 92, 1937-1951. (Invited article in Diamond Jubilee Issue to celebrate the 60th anniversary of Pure and Applied Chemistry)

[41] Ozden, A.; Li, F.; Garcia de Arquer, F. P.; Rosas-Hernández, A.; Thevenon, A.; Wang, Y.; Hung, S.-F.; Wang, X.; Chen, B.; Li, J.; Wicks, J.; Luo, M.; Wang, Z.; Agapie, T.; Peters, J.; Sargent, E. H.; Sinton, D. High-rate and efficient ethylene electrosynthesis using a catalyst:promoter:transport layer. ACS Energy Lett. 2020, 5, 2811-2818.

[40] Wang, Q.; Xu, C.-Q.; Liu, W.; Hung, S.-F.; Yang, H. B.; Gao, J.; Cai, W.; Chen, H. M.; Li, J.; Liu, B. Coordination Engineering of Iridium Nanocluster Bifunctional Electrocatalyst for Highly Efficient and pH-universal Overall Water Splitting. Nature Commun. 2020, 11, 4246.

[39] Jiang, L.; Liu, K.; Hung, S.-F.; Zhou, L.; Qin, R.; Zhang, Q.; Liu, P.; Gu, L.; Chen, H. M.; Fu, G.; Zheng, N. Facet Engineering Accelerates Spillover Hydrogenation on Highly Diluted Metal Nanocatalysts. Nature Nanotechnol. 2020, 15, 848-853.

[38] Hung, S.-F.* In-situ X-ray Techniques for non-noble Electrocatalysts. Pure Appl. Chem. 2020, 92, 733-749. (Invited Review for IUPAC-Solvay International Award for Young Chemists)

[37] Cai, W.; Chen, R.; Yang, H.; Tao, H. B.; Wang, H.-Y.; Gao, J.; Liu, W.; Liu, S.; Hung, S.-F.; Liu, B. Amorphous vs Crystalline in Water Oxidation Catalysis: A Case Study of NiFe alloy. Nano Lett. 2020, 20, 4278-4285.

[36] Wang, X.; Wang, Z.; García de Arquer, F. P.; Dinh, C.-T.; Ozden, A.; Li, C. Y.; Nam, D.-H.; Li,  J.; Liu, Y.-S.; Wicks, J.; Chen, Z.; Chi, M.; Chen, B.; Wang, Y.; Tam, J.; Howe, J. Y.; Proppe, A.; Todorović, P.; Li, F.; Zhuang, T.-T.; Gabardo C. M.; Kirmani, A. R.; McCallum, C.; Hung, S.-F.; Lum, Y.; Luo, M.; Min, Y.; Xu, A.; O'Brien, C. P.; Stephen, B.; Sun, B.; Ip, A. H.; Richter, L. J.; Kelley, S. O.; Sinton, D.; Sargent, E. H. Efficient electrically-powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy 2020, 5, 478-486.

[35] Wang, X.; Xu, A.; Li, F.; Hung, S.-F.; Nam, D.-H.; Gabardo, C. M.; Wang, Z.; Xu, Y.; Ozden, A.; Rasouli, A. S.; Ip, A. H.; Sinton, D.; Sargent, E. H. Efficient methane electrosynthesis enabled by tuning local CO2 availability. J. Am. Chem. Soc. 2020, 142, 3525-3531. 

[34] Gao, J.; Yang, H. B.; Huang, X.; Hung, S.-F.; Cai, W.; Jia, C.; Miao, S.; Chen, H. M.; Yang, X.; Huang, Y.; Zhang, T.; Liu, B. Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. Chem 2020, 6, 658-674. 

[33] Li, F.; Li, C. Y.; Wang, Z.; Li, J.; Nam, D.-H.; Lum, Y.; Luo, M.; Wang, X.; Ozden, A.; Hung, S.-F.; Chen, B.; Wang, Y.; Wicks, J.; Xu, Y.; Li, Y.; Gabardo C. M.; Dinh, C.-T.; Wang, Y.; Zhuang, T.-T.; Sinton, D.; Sargent, E. H. Cooperative CO2-to-Ethanol Conversion via Enriched Intermediates at Molecule:Metal Catalyst Interfaces. Nature Catal. 2020, 3, 75-82.

[32] Liu, S.; Yang, H. B.; Hung, S.-F.; Ding, J.; Cai, W.; Liu, L.; Gao, J.; Li, X.; Ren, X.; Kuang, Z.; Huang, Y.; Zhang, T.; Liu, B. Electrifying Model Single-Atom Catalyst for Elucidating the CO2 Reduction Reaction. Angew. Chem. Int. Ed. 2020, 59, 798-803. (Inside Cover)

2019

[31] Chang, C.-J.; Hung, S.-F.; Hsu, C.-S.; Chen, H.-C.; Lin, S.-C.; Liao, Y.-F.; Chen, H. M. Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuOx on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. ACS Cent. Sci. 2019, 5, 1998-2009. (Front Cover)

[30] Hung, S.-F.; Zhu, Y.; Tzeng, G.-Q.; Chen, H.-C.; Hsu, C.-S.; Liao, Y.-F.; Ishii, H.; Hiraoka, N.; Chen H. M. In Situ Spatially Coherent Identification of Phosphide-based Catalysts: Crystallographic Latching for High-efficient Overall Water Electrolysis. ACS Energy Lett. 2019, 4, 2813-2820.

[29] Chen, R.; Hung, S.‐F.; Zhou, D.; Gao, J.; Yang, C.; Tao, H.; Yang, H. B.; Zhang, L.; Xiong, Q.; Chen H. M.; Liu, B. Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction. Adv. Mater. 2019, 1903909.

[28] Yuan, L.; Hung, S.-F.; Tang, Z.-R.; Chen, H. M.; Xiong, Y.; Xu, Y.-J. Dynamic Evolution of Atomically Dispersed Cu Species for CO2 Photoreduction to Solar Fuels. ACS Catal. 2019, 9, 4824-4833.

[27] Chen, G.; Zhu, Y.; Chen, H. M.; Hu, Z.; Hung, S.-F.; Ma, N.; Dai, J.; Lin, H.-J.; Chen, C.-T.; Zhou, W.; Shao, Z. An Amorphous Nickel–Iron‐Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Adv. Mater. 2019, 31, 1900883. 

[26] Jiao, J.; Lin, R.; Liu, S.; Cheong, W.-C.; Zhang, C.; Chen Z.; Pan, Y.; Wu, K.; Hung, S.-F.; Chen, H. M.; Zheng, L. R.; Lu, Q.; Yang, X.; Xu, B.; Xiao, H.; Li, J.; Wang, D.; Peng, Q.; Chen, C.; Li, Y. Cu atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chem. 2019, 11, 222-228.

[25] Gao, J.; Xu, C.-Q.; Hung, S.-F.; Liu, W.; Cai, W.; Zeng, Z.; Jia, C.; Chen, H. M.; Xiao, H.; Li, J.; Huang, Y.; Liu, B. Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation. J. Am. Chem. Soc. 2019, 141, 3014-3023.

2018

[24] Hung, S.-F.; Chan, Y.-T.; Chang, C.-C.; Tsai, M.-K.; Liao, Y.-F.; Hiraoka, N.; Hsu, C.-S.; Chen, H. M. Identification of Stabilizing High-valent Active Sites by Operando High-energy Resolution Fluorescence-detected X-ray Absorption Spectroscopy for High Efficient Water Oxidation. J. Am. Chem. Soc. 2018, 140, 17263-17270.

[23] Hsu, S.‐H.; Hung, S.‐F.; Wang, H.‐Y.; Xiao, F.‐X.; Zhang, L.; Yang, H.; Chen, H. M.; Lee, J.‐M.; Liu, B. Tuning the Electronic Spin State of Catalysts by Strain Control for Highly Efficient Water Electrolysis. Small Methods 2018, 1800001.

[22] Hsu, S.‐H.; Miao, J.; Zhang, L.; Gao, J.; Wang, H.; Tao, H.; Hung, S.‐F.; Vasileff, A.; Qiao, S. Z.; Liu B. An Earth‐Abundant Catalyst‐Based Seawater Photoelectrolysis System with 17.9% Solar‐to‐Hydrogen Efficiency. Adv. Mater. 2018, 1707261.

[21] Hung, S.-F.; Chen, Z.-Z.; Chang, C.-C.; Hsu, C.-S.; Tsai, M.-K.; Kang, C.-C.; Chen, H. M. Dual-Hole Excitons Activated Photoelectrolysis in Neutral Solution. Small 2018, 14, 1704047.

[20] Yang, H.; Hung, S.-F.; Liu, S.; Yuan, K.; Miao, S.; Zhang, L.; Huang, X.; Wang, H.-Y.; Cai, W.; Chen, R.; Gao, J.; Yang, X.; Chen, W.; Huang, Y.; Chen, H. M.; Li, C.; Zhang, T.; Liu, B. Atomically Dispersed, Low valent Ni(I) as the Active Site for Electrochemical CO2 Reduction. Nature Energy 2018, 3, 140-147.

[19] Ma, L.; Hung, S.-F.; Zhang, L.; Cai, W.; Yang, H. B.; Chen, H. M.; Liu, B. High Spin State Promotes Water Oxidation Catalysis at Neutral pH in Spinel Cobalt Oxide. Ind. Eng. Chem. Res. 2018, 57, 1441-1445.

[18] Hung, S.-F.; Hsu, Y.-Y.; Chang, C.-J.; Hsu, C.-S.; Suen, N.-T.; Chan, T.-S.; Chen, H. M. Unraveling Geometrical Site Confinement in Iron-Doped Electrocataltsts toward Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1701686. (Back Cover)

2017

[17] Ma, Q.; Hu, C.; Liu, K.; Hung, S.-F.; Ou, D.; Chen, H. M.; Fu, G.; Zheng, N. Identifying the Elelctrocatalytic Sites of Nickel Disulfide in Alkaline Hydrogen Evolution Reaction. Nano Energy 2017, 41, 148-153.

[16] Hu, C.; Ma, Q.; Hung, S.-F.; Chen, Z.; Ren, B.; Chen, H. M.; Fu, G.; Zheng, N. In Situ Electrochemical Production of Ultrathin Nickel Nanosheets for Efficient Hydrogen Evolution Electrocatalysis. Chem 2017, 3, 122-133.

[15] Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365. (Front Cover)

2016

[14] Wang, H.-Y.; Hung, S.-F.; Hsu, Y.-Y.; Zhang, L.; Miao, J.; Chan, T.-S.; Xiong, Q.; Liu, B. In-Situ Spectroscopic Identification of μ-OO Bridging on Spinel Co3O4 Water Oxidation Electrocatalyst. J. Phys. Chem. Lett. 2016, 7, 4847-4853.

[13] Gao, J.; Jia, C.; Zhang, L.; Wang, H.; Yang, Y.; Hung, S.-F.; Hsu, Y.-Y.; Liu, B. Tuning Chemical Bonding of MnO2 through Transition-Metal Doping for Enhanced CO Oxidation. J. Catal. 2016, 341, 82-90.

[12] Hung, S.-F.; Tung, C.-W.; Chan, T.-S.; Chen, H. M. In-Situ Morphological Transformation and Investigation of Electrocatalytic Properties of Cobalt Oxide Nanostructures toward Oxygen Evolution. CrystEngComm 2016, 18, 6008.

[11] Yang, H. B.; Miao, J.; Hung, S. F.; Chen, J.; Tao, H. B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. M.; Dai, L.; Liu, B. Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-Doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst. Science Adv. 2016, 2, e1501122.

[10] Hung, S.-F.; Xiao, F.-X.; Hsu, Y.-Y.; Suen, N.-T., Yang, H. B.; Chen, H. M.; Liu, B. Iridium Oxide-Assisted Plasmon-Induced Hot Carriers: Improvement on Kinetics and Thermodynamics of Hot Carriers. Adv. Energy Mater. 2016, 6, 1501339. (Back Cover)

[9] Wang, H.-Y.; Hung, S.-F.; Chen, H.-Y.; Chan, T.-S.; Chen, H. M.; Liu, B. In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39.

[8] Hung, S.-F.; Yu, Y.-C.; Suen, N.-T.; Tzeng, G.-Q.; Tung, C.-W.; Hsu, Y.-Y.; Hsu, C.-S.; Chang, C.-K.; Chan, T.-S.; Sheu, H.-S.; Lee, J.-F.; Chen, H. M. The Synergistic Effect of a Well-Defined Au@Pt Core-Shell Nanostructure Toward Photocatalytic Hydrogen Generation: Interface Engineering to Improve the Schottky Barrier and Hydrogen-Evolved Kinetics. Chem. Commun. 2016, 52, 1567-1570. (Inside Cover)

2015

[7] Xiao, F.-X.; Zeng, Z.; Hsu, S.-H.; Hung, S.-F.; Chen, H. M.; Liu, B. Light-Induced in Situ Transformation of Metal Clusters to Metal Nanocrystals for Photocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 28105–28109.

[6] Hsu, Y.-Y.; Suen, N.-T.; Chang, C.-C.; Hung, S.-F.; Chen, C.-L.; Chan, T.-S.; Dong, C.-L.; Chan, C.-C.; Chen, S.-Y.; Chen, H. M. Heterojunction of Zinc Blende/Wurtzite in Zn1–xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-Ray Absorption/Diffraction Approaches. ACS Appl. Mater. Interfaces 2015, 7, 22558–22569.

[5] Xiao, F.-X.; Miao, J.; Tao, H. B.; Hung, S.-F.; Wang, H.-Y.; Yang, H. B.; Chen, J.; Chen, R.; Liu, B. One-Dimensional Hybrid Nanostructures for Heterogeneous Photocatalysis and Photoelectrocatalysis. Small 2015, 11, 2115–2131. 

2014

[4] Xiao, F.-X.; Hung, S.-F.; Tao, H. B.; Miao, J.; Yang, H. B.; Liu, B. Spatially Branched Hierarchical ZnO Nanorod-TiO2 nanotube Array Heterostructures for Versatile Photocatalytic and Photoelectrocatalytic Applications: Towards Intimate Integration of 1D–1D Hybrid Nanostructures. Nanoscale 2014, 6, 14950–14961.

[3] Yang, H. B.; Miao, J.; Hung, S.-F.; Huo, F.; Chen, H. M.; Liu, B. Stable Quantum Dot Photoelectrolysis Cell for Unassisted Visible Light Solar Water Splitting. ACS Nano 2014, 8, 10403–10413.

[2] Xiao, F.-X.; Hung, S.-F.; Miao, J.; Wang, H.-Y.; Yang, H.; Liu, B. Metal-Cluster-Decorated TiO2 Nanotube Arrays: a Composite Heterostructure Toward Versatile Photocatalytic and Photoelectrochemical Applications. Small 2014, 11, 554–567.

2013

[1] Hsu, S.-H.; Hung, S.-F.; Chien, S.-H. CdS Sensitized Vertically Aligned Single Crystal TiO2 Nanorods on Transparent Conducting Glass with Improved Solar Cell Efficiency and Stability Using ZnS Passivation Layer. J. Power Sources 2013, 233, 236–243.

inocaj.2023.62.issue-47.xlargecover.jpg
10 jacsat.2023.145.issue-13.xlargecover-4.jpeg
9 ascecg_v010i020-2.jpeg
8 d2cy90035a.jpg
7 jpccck_v126i012.jpg
6 Liu_et_al-2020-Angewandte_Chemie_Inter
5 acscii_v005i012.jpg
4 c7cs90005h.jpg
1 Hung_et_al-2018-Advanced_Energy_Materi
2 Hung_et_al-2016-Advanced_Energy_Materi
3 c6cc90038k.jpg
bottom of page