top of page

2021 - 2022 (16)

2022​ (10)

[60] Lee, S.; Park, S. M.; Jung, E. D.; Zhu, T.; Pina, J. M.; Anwar, H.; Wu, F.-Y.; Chen, G.-L.; Dong, Y.; Cui, T.; Wei, M.; Bertens, K.; Wang, Y.-K.; Chen, B.; Filleter, T.; Hung, S.-F.; Won, Y.-H.; Kim, K.-H.; Hoogland, S.; Sargent, E. H. Dipole Engineering Through the Orientation of Interface Molecules for Efficient InP Quantum Dot Light-Emitting Diodes. J. Am. Chem. Soc. 2022144, 20923-20930.

​

[59] Xu, A.;† Hung, S.-F.; Yan, Y.; Rasouli, A. S.; Ozden, A.; Huang, E. J.; Grigioni, I.; Li, F.; Luo, M.; Wang, Y.; Wang, X.; Abed, J.; Wang, Z.; Nam, D.-H.; Li, C. Y.; Ip, A.; Sinton, D.; Dong, C.; Li, X.; Sargent, E. H. Stable Cu: Alkali Earth Metal Oxide Interfaces for Electrochemical CO2 to Alcohols by Selective Hydrogenation. Nature Catal. 2022, 5, 1081. (†These authors equally contribute to this work).

​

[58] Zhang, J.; Cao, X.; Jiang, Y.; Hung, S.-F.; Liu, W.; Yang, H.; Xu, C.-Q.; Li, D.-S.; Zhang, T.; Li, Y.; Li, J.; Liu, B. Surface Enrichment of Ir on IrRu Alloy for Efficient and Stable Water Oxidation Catalysis in Acid. Chem. Sci. 2022, 13, 12114-12121.

​

[57] Lu, Y.-H.; Tsai, H.-J.; Huang, W.-Y.; Lee, T.-J.; Lin, Z.-Y.; Hsu, S.-H.;* Hung, S.-F.* A Nitrogen-doped Graphene-supported Nickel-single-atom Catalyst in the Flow Cell Meets the Industrial Criteria of Carbon Dioxide Reduction Reaction to Carbon Monoxide. Front. Catal. 2022, 2, 915971. 

​

[56] Lu, Y.-R.; Chen, H.-C.; Liu, K.; Liu, M.; Chan, T.-S.; Hung, S.-F.* Turn the Trash into Treasure: Egg-White-Derived Single-Atom Electrocatalysts Boost Oxygen Reduction Reaction. ACS Sustain. Chem. Eng. 2022, 10, 6736-6742. (Cover)

​

[55] Rasouli, A. S.; Wang, X.; Wick, J.; Dinh, C.-T.; Abed, J.; Wu, F.-Y.; Hung, S.-F.; Bertens, K.; Huang, J. E.; Sargent, E. H. Disrupted C-C coupling enables efficient methane electroproduction on CuAlGa catalysts. Chem Catal. 2022, 2, 908-916.

​

[54] Hung, S.-F.;* Wu, F.-Y.; Lu, Y.-H.; Lee, T.-J.; Tsai, H.-J.; Chen, P.-H.; Lin, Z.-Y.; Chen, G.-L.; Huang, W.-Y.; Zeng, W.-J. Operando X-ray Absorption Spectroscopic Studies of Carbon Dioxide Reduction Reaction in a Modified Flow Cell. Catal. Sci. Technol. 2022, 12, 2739-2743. (themed collection: In situ and operando spectroscopy in catalysis) (Back Cover)

​

[53] Chang, C.-C.; Ku, M.-S.; Lien, W.-H.; Hung, S.-F. Unveiling the Bonding Nature for C3 Intermediates in CO2 Reduction Reaction Through Oxygen-Deficient Cu2O(110) Surface - A DFT Study. J. Phys. Chem. C 2022, 126, 5502-5512. (Cover)

​

[52] Wang, X.; Ou, P.; Ozden, A.; Hung, S.-F.; Tam, J.; Gabardo C. M.; Howe, J. Y.; Sisler, J.; Bertens, K.; Garcia de Arquer, F. P.; Miao, R. K.; O’Brien, C. P.; Wang, Z.; Abed, J.; Sun, M.; Ip, A. H.; Sinton, D.; Sargent, E. H. Efficient electrosynthesis of C3 fuel from carbon monoxide. Nature Energy 2022, 7, 170-176.

​

[51] Hung, S.-F.; Xu, A.; Wang, X.; Li, F.; Hsu, S.-H.; Li, Y.; Wick, J.; Cervantes, E. G.; Rasouli, A. S.; Li, C. Y.; Luo, M.; Nam, D.-H.; Wang, N.; Peng, T.; Yan, Y.; Lee, G.; Sargent, E. H. A Metal- Supported Single-Atom Catalytic Site Enables Carbon Dioxide Hydrogenation. Nature Commun. 202213, 819.

​

2021 (6)

[50] Wang, N.;† Xu, A.;† Ou, P.;† Hung, S.-F.; Ozden, A.; Lu, Y.-R.; Abed, J.; Wang, Z.; Yan, Y.; Sun, M.; Xia, Y.; Han, M.; Han, J.; Yao, K.; Wu, F.-Y.; Chen, P. H.; Vomiero, A.; Seifitokaldani, A.; Sun, X.; Sinton, D.; Liu, Y.; Sargent, E. H.; Liang, H. Boride-Derived Oxygen-Evolution Catalysts. Nature Commun. 2021, 12, 6089. (†These authors equally contribute to this work).

​

[49] Peng, T.; Zhuang, T.-T.; Yan, Y. ; Qian, J.; Dick, G.; Behaghel de Bueren, J.; Hung, S.-F.; Zhang, Y.; Wang, Z.; Wicks, J.; Garcia de Arquer, F. P.; Abed, J.; Wang, N.; Sedighian Rasouli, A.; Lee, G.; Wang, M. ; He, D.; Wang, Z.; Liang, Z.; Song, L.; Wang, X.; Chen, B.; Ozden, A.; Lum, Y.; Leow, W. R.; Luo, M.; Motta Meira, D.; Ip, A.; Luterbacher, J.; Zhao, W.; Sargent, E. H. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 2021, 143, 17226-17235.

​

[48] Chen, Z.-Y.; Niu, H.; Ding, J.; Liu, H.; Zuo, W.; Han L.; Guo, Y.;* Hung, S.-F.;* Zhai, Y.* Unraveling the Origin of Sulfur-doped Fe-N-C Single Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Fe-spin State Tuning. Angew. Chem. Int. Ed. 2021, 60, 25404-25410. 

​

[47] Zhang, J.; Xu, W.; Liu, Y.; Hung, S.-F.; Liu, W.; Lam, Z.; Tao, H. B.; Yang, H. B.; Cai, W.; Xiao, H.; Chen, H.; Liu, B. Precise Tuning of Intermediate Adsorption Energy on Bimetallic Surface for Boosting Oxygen Reduction Catalysis. Nano Lett. 2021, 21, 7753-7760.

​

[46] Li, X.; Zeng, Y.; Tung, C.-W.; Lu, Y.-R.; Baskaran, S.; Hung, S.-F.; Wang, S.; Xu, C.-Q.; Wang, J.; Chan, T.-S.; Chen, H. M.; Jiang, J.; Yu, Q.; Huang, Y.; Li, J.; Zhang, T.; Liu, B. Unveiling the In-Situ Generation of Monovalent Fe(I) Site in Single-Fe-Atom Catalyst for Electrochemical CO2 Reduction. ACS Catal. 2021, 11, 7292-7301.

​

[45] Xu, Y.; Li, F.; Xu, A.; Edwards, J. P.; Hung, S.-F.; Gabardo C. M.; O’Brien, C. P.; Liu, S.; Wang, X.; Li, Y.; Wicks, J.; Miao, R. K.; Liu, Y.; Li, J.; Huang, J. E.; Abed, J.; Wang, Y.; Sargent, E. H.; Sinton, D. An Ultra-low Coordinated Copper Catalyst for Stable and Scalable Electrochemical CO2 methanation. Nature Commun. 2021, 12, 2932.

​

13 Angew Chem Int Ed - 2025 - Zhao - Inside Front Cover  Exploring the Mechanism of Surfac
inocaj.2023.62.issue-47.xlargecover.jpg
10 jacsat.2023.145.issue-13.xlargecover-4.jpeg
9 ascecg_v010i020-2.jpeg
8 d2cy90035a.jpg
7 jpccck_v126i012.jpg
6 Liu_et_al-2020-Angewandte_Chemie_Inter
5 acscii_v005i012.jpg
4 c7cs90005h.jpg
1 Hung_et_al-2018-Advanced_Energy_Materi
2 Hung_et_al-2016-Advanced_Energy_Materi
3 c6cc90038k.jpg

Department of Applied Chemistry

National Yang Ming Chiao Tung University

  • Facebook Clean Grey
  • Twitter Clean Grey
  • LinkedIn Clean Grey

© 2023 by Scientist Personal. Proudly created with Wix.com

bottom of page